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Several papers [1-4] have considered the propagation of a plane
laminar jet of incompressible conducting fluid in a uniform magnetic
field for magnetic Reynolds numbers much less than unity. These
papers have investigated the flow of a free jet in a transverse magnetic
field for small values of the magnetic interaction parameter. Equations
for the first approximations were obtained in [1,2] by a series expansion
in the small interaction parameter close to the ordinary solution
(without magnetic field) for the jet. The equations for the zero-th and
first approximations were integrated in [3]. The same author also
found a similar solution for a turbulent jet, the turbulent transfer
coefficient being chosen according to Prandtl's method. As regards the
solution found in [4], it suffers from the defect that the constant of
integration which connects the real velocity profiles with those found in
the paper remains undetermined. The present paper gives an approxi-
mate solution of the same dynamic problem of the propagation of a
free plane jet in a uniform field, no assumption being made as to the
smallness of the interaction parameter. In order to do this the integral
method of solution, common in ordinary hydrodynamics [5, 6] is
employed. The solution of the problem is generalized to include the
case of a finite value of the Hall parameter,

1. Let a jet of conducting fluid flow from an infinite
thin slit located at the point 0 in the direction of the
x axis, into a space filled with the same fluid at rest
(Fig. 1). We shall assume that the region of jet propa-
gation is situated inaninfinite external uniform magnetic
field of field strength Hy, in the direction of the y axis
and with a magnetic Reynolds number Ry, < 1.

In the case under consideration the equations of
motion and continuity, and also the boundary conditions
have the form
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In accordance with the integral method of solution
the velocity profile will be sought in the form of a
fourth~degree polynomial

u=a,+ ay®+ agt, (1.3)
where the odd terms have been omitted in view of the
symmetry of the situation.

In order to determine the coefficients of the poly-
nomial (1.3) we require that the following boundary
conditions be fulfilled:
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The condition for y = 0 is obtained from the initial
equation (1.1), uy, is the value of the velocity on the
axis of the jet [uy, = u(x,0)], 6 is the effective width
of the jet.

Determining the constants ay, a, a,and setting
them in the relation (2.3), we find an expression for
the required velocity profile
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In order to determine the value of the velocity on the
axis of the jet u,, and its thickness 6 we must have
two equations. The first of these comes from the
expression for the velocity (1.5) on the axis of the jet
E /du \)

== IW+N

y (1.6)

The second equation is obtained from the initial
equations (1.1) by integrating them across the jet

The system of equations (1.6) and (1.7) gives us an
expression for the maximum velocity
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The effective thickness of the jet 4 is determined
from the equation

8(8+ 15 Vo) S0+ (4 Fp o) (2 =0, @.9)

with the boundary condition 6 = 0 for x = 0. We find
an expression for the thickness of the jet by integrating
equation (1.9):
5 -
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In order to determine the constant of integration C
we integrate equation (1.7) obtaining

U206 - % NS Umd dz = const = Iy/k
0
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The constant of integration is taken to be equal to I
since the term uy, *0k determines the initial momentum
of the jet I for x = 0.

Using relations (1.10) and (1.11) we determine the
constant C:

c=8Vk V. (1.12)
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The relations obtained enable us to determine the
longitudinal (u) and transverse (v) velocity components
by using Eq. (1.8) and the continuity equation.

It is clear from the expression for jet thickness & that for values of
the magnetic interaction parameter which are nonzero (N = 0) there
ceases to be any development of the jet at a certain finite distance
from the source equal to x =~ 1,35 N's/4 \/1_171/—2 . Here the jet thickness
becornes infinitely large (Fig. 2), while the velocity becomes zero,
The jet momentum decreases along the x axis at a rate which increases
as the parameter N increases; the rate of flow of the jet which is
proportional to the quantity upy 8, passes through an extremum as the
distance from the jet source (ump = 0 for x = 0) increases, and becomes
zero once more for x = 1,35 N-%/* W . The transverse velocity
component changes sign at a value of x corresponding to the maximum
value of the flowrate. Consequently, the decrease in flowrate of the
stream is associated with the fluid in the jet being forced out into the
surrounding medium.

We note that in the region where there is a sharp increase in jet
thickness we must allow for effects arising from the fact that the
transverse and longitudingl velocity components are commensurable,
and also for the formation of a pressure gradient associated with the
distortion of the streamlines. In other words, we must exercise special
care when applyi'ng the boundary layer equations to this region.

2. In order to compare the solution obtained by the
integral method with the exact solution (in the frame~
work of the asymptotic layer theory) we shall consider
the propagation of a jet in a nonuniform field.

Fig. 1

As in [7], we shall assume that the magnetic field
varies inversely as the width of the jet:

H=H,/5. 2.1)

We have from the system of equations (1.6) and
(1.7), taking (2.1) into account, the following expres-
sions for the required quantities:
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In order to determine the constant C we make use
of the fact that an integral of the form

3
S uble gy — D @2.4)
—8

does not change along the axis of the stream. From
this condition we obtain for C

1
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Fig. 2

Similar results obtained from the exact solution of
the problem [7] are quoted at this point:
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In comparing the solution obtained by the integral
method with the exact solution we must allow for the
difference in the formulas defining the parameter N.

Figure 4 compares the self -similarity constants « and 8 as functions
of the magnetic interaction parameter, where N is calculated from
formula (2.6). It is clear from the figure that the results of the integral
method (continuous line) relating to the variation of the maximum
velocity and jet thickness along its axis are in agreement with similar
results of the exact solution (broken line), From the solutions which
have been obtained it follows that a self -similar solution for the jet
exists when the magnetic parameter varies within the region 0 = N <
< 3.4. The upper limit of the parameter N = 3,4 is determined by the
fact that the flowrate of the jet along the axis ought to increase in the
case under consideration. Here the self-similarity constants vary,
respectively, within the limits

—yza>1, P >p> 1.

It also follows from the solutions that for self-similar spreading of
the jet in a magnetic field a specific relationship must hold between
the dynamic jet characteristic D and the applied magnetic field.

1

Fig. 3

Physically, it is clear that this is connected with the fact that for
given values of the initial jet momentum and the parameter which
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determines how the magnetic field varies along the axis of the jet,
self ~similar development of the jet occurs only for one characteristic
value of the magnetic field strength H,.
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Fig. 4

For the limiting value of the parameter N = 8.4, a= 8= —1 the
jet degenerates to flow at a constant flowrate; consequently, the fluid
flowrate for the jet source is equal to zero [4]. We note here that the
solution of [8] refers to just this case, which to our minds seems
physically unrealistic.

Dimensionless velocity profiles are given for transverse cross-
sections in Fig, 3. The comparison shows clearly that the velocity
distributions obtained by the integral method (continuous line) differ
markedly from the exact solution (broken line). We note that in the
case under consideration the self-similar velocity profile obtained by
the integral method has the same form as for purely hydrodynamic
jet flow.

3. We shall consider the problem of jet propagation
in a uniform magnetic field allowing for the dependence
of the conductivity on the magnetic field, and for the
same condition Ry, < 1. Theinitial system of equations
is written in the following form [9, 10] for a finite value
of the Hall parameter wt:

du du %u ap2H?

Yo Ve =V T R peny (W O™
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In what follows we neglect the term w7w in the first
equation, as was done, for example, in [9,10]. We
shall seek the velocity profiles in the form of poly-
nomials

u = ay + ay® + ayt, w = by + byy® + byt. (3.2)

Determining the coefficients from the six boundary
conditions
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we obtain
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Here N° denotes the interaction parameter

il

(3.5)

We have the following equations for determining u;,
and wo,:
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The solution of the first equation of (3.6) and Eq.
(1.7) is given above (with N changed to N°), The sys-
tem of equations (3.6) gives us an expression for the
maximum value of the transverse velocity component

x
- vode
W = Cut — NoTun, 5 -
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3.7

The constant of integration C = 0, since by hypothe-
sis the jet has no initial rotation relative to the y
axis (uwé = 0 for x = 0). _

Calculating the integral in expression (3.7), we
have

W = — Yot In (1 41/ N§?). (3.8)

The solution which has been obtained shows that a motion trans-
verse to the plane of flow arises in the jet, As wr increases the velocity
of the sideways flow increases. However, a further increase of wr,
starting from some particular value, leads to a decrease of velocity
of transverse motion until w-> 0 for wr—> «, The longitudinal velocity
component U decreases as wT increases, and as wrt > o it tends to the
limiting velocity distribution for a flow of nonconducting fluid (case
N = 0),

The solutions obtained for the propagation of a conducting fluid
jet in the absence of .a magnetic field (N = 0) pass into the corre-
sponding solutions for purely hydrodynamic flow.

It should be noted that the integral method has been applied to the
problem under consideration by E. V. Shcherbina [11].
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